眼部给药新剂型

孙茹茹, 汤湛, 王俏

中国药学杂志 ›› 2016, Vol. 51 ›› Issue (23) : 1993-1998.

PDF(1005 KB)
PDF(1005 KB)
中国药学杂志 ›› 2016, Vol. 51 ›› Issue (23) : 1993-1998. DOI: 10.11669/cpj.2016.23.002
综述

眼部给药新剂型

  • 孙茹茹1,2, 汤湛2, 王俏2*
作者信息 +

New Dosage Forms for Ocular Administration

  • SUN Ru-ru1,2, TANG Zhan2, WANG Qiao2*
Author information +
文章历史 +

摘要

局部眼睛用药是治疗眼部疾病最常用的方法。然而,普通制剂在眼部的生物利用度很低,这使得许多药物对眼部疾病的防治效果并不理想,也给眼部疾病治疗带来了巨大挑战。近年来,纳米制剂在眼部给药系统中得到了广泛应用。目前,几种纳米载体新剂型如聚合物胶束、纳米粒、纳米混悬剂、脂质体、乳剂和树枝状聚合物已被开发,用于眼部给药系统;还有一些其他的新剂型如原位凝胶载体系统、植入剂、隐形眼镜和微针也在不断地研究中。研发这些新剂型的最终目的都是提高药物的生物利用度及治疗效果。笔者对这些方面近年来的发展做一综述,以期为开发新型眼部给药系统提供参考。

Abstract

Topical ocular medication is commonly used for eye diseases treatment.In view of low bioavailability and poor efficacy of traditional ocular preparations,the development of novel ocular drug delivery systems has become a great challenge in pharmaceutics.In recent years, nano preparations have been widely used for ocular drug delivery systems. At present, several nanocarriers, such as polymeric micelles, nanoparticles, nanosuspension, liposomes, emulsion, and dendritic polymers have been developed for ocular drug delivery.There are some other new dosage forms, such as in-situ gelling systems, implants, contact lenses, and microneedles are also under continuous research. The aim of development of these new dosage forms is to improve the drugs' ocular bioavailability and therapeutic effects.In this paper,the development in these areas in recent years are reviewed in order to provide reference for the development of new ocular drug delivery systems.

关键词

/ 纳米 / 胶束 / 脂质体 / 原位凝胶载体系统 / 隐形眼镜 / 植入剂 / 微针

Key words

ocular / nano / micelle / liposome / in-situ gelling system / contact lenses / implant / microneedle

引用本文

导出引用
孙茹茹, 汤湛, 王俏. 眼部给药新剂型[J]. 中国药学杂志, 2016, 51(23): 1993-1998 https://doi.org/10.11669/cpj.2016.23.002
SUN Ru-ru, TANG Zhan, WANG Qiao. New Dosage Forms for Ocular Administration[J]. Chinese Pharmaceutical Journal, 2016, 51(23): 1993-1998 https://doi.org/10.11669/cpj.2016.23.002
中图分类号: R944   

参考文献

[1] ACHOURI D, ALHANOUT K, PICCERELLE P, et al. Recent advances in ocular drug delivery [J]. Drug Dev Ind Pharm, 2013, 39(11):1599-1617.
[2] YELLEPEDDI V K, PALAKURTHI S. Recent advances in topical ocular drug delivery [J]. J Ocul Pharmacol Ther, 2016, 32(2):67-82.
[3] PATEL S, GARAPATI C, CHOWDHURY P, et al. Development and evaluation of dexamethasone nanomicelles with potential for treating posterior uveitis after topical application [J]. J Ocul Pharmacol Ther, 2015, 31(4):215-227.
[4] LI X, ZHANG Z, LI J, et al. Diclofenac/biodegradable polymer micelles for ocular applications [J]. Nanoscale, 2012, 4(15):4667-4673.
[5] VAISHYA R D, GOKULGANDHI M, PATEL S, et al. Novel dexamethasone-loaded nanomicelles for the intermediate and posterior segment uveitis [J]. AAPS Pharm Sci Tech, 2014, 15(5):1238-1251.
[6] VADLAPUDI A D, CHOLKAR K, VADLAPATLA R K, et al. Aqueous nanomicellar formulation for topical delivery of biotinylated lipid prodrug of acyclovir:formulation development and ocular biocompatibility [J]. J Ocul Pharmacol Ther, 2014, 30(1):49-58.
[7] SUK J S, XU Q, KIM N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery [J]. Adv Drug Deliv Rev, 2016, 99(PtA):28-51.
[8] BHATTA R S, CHANDASANA H, CHHONKER Y S, et al. Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: in vitro and pharmacokinetics studies [J]. Int J Pharm, 2012, 432(1-2):105-112.
[9] ALQAWLAQ S, SIVAK J M, HUZIL J T, et al. Preclinical development and ocular biodistribution of gemini-DNA nanoparticles after intravitreal and topical administration:towards non-invasive glaucoma gene therapy [J]. Nanomedicine, 2014, 10(8):1637-1647.
[10] KHAN M S, VISHAKANTE G D, BATHOOL A. Development and characterization of pilocarpine loaded eudragit nanosuspensions for ocular drug delivery [J]. J Biomed Nanotechnol, 2013, 9(1):124-131.
[11] ALI H S, YORK P, ALI A M, et al. Hydrocortisone nanosuspensions for ophthalmic delivery:a comparative study between microfluidic nanoprecipitation and wet milling. [J]. J Controlled Release, 2011, 149(2):175-176.
[12] MOKHTAR IBRAHIM M, TAWFIQUE S A, MAHDY M M. Liposomal diltiazem HCl as ocular drug delivery system for glaucoma [J]. Drug Dev Ind Pharm, 2014, 40(6):765-773.
[13] VICARIO-DE-LA-TORRE M, BENITEZ-DEL-CASTILLO J M, VICO E, et al. Design and characterization of an ocular topical liposomal preparation to replenish the lipids of the tear film [J]. Invest Ophthalmol Vis Sci, 2014, 55(12):7839-7847.
[14] AGARWAL R, IEZHITSA I, AGARWAL P, et al. Liposomes in topical ophthalmic drug delivery:an update [J]. Drug Deliv, 2016, 23(4):1075-1091.
[15] LIN J, WU H, WANG Y, et al. Preparation and ocular pharmacokinetics of hyaluronan acid-modified mucoadhesive liposomes [J]. Drug Deliv, 2016, 23(4):1144-1151.
[16] USTUNDAG-OKUR N, GOKCE E H, EGRILMEZ S, et al. Novel ofloxacin-loaded microemulsion formulations for ocular delivery [J]. J Ocul Pharmacol Ther, 2014,30(4):319-332.
[17] YING L, TAHARA K, TAKEUCHI H. Drug delivery to the ocular posterior segment using lipid emulsion via eye drop administration:effect of emulsion formulations and surface modification [J]. Int J Pharm, 2013, 453(2):329-335.
[18] KALOMIRAKI M, THERMOS K, CHANIOTAKIS N A. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications [J]. Int J Nanomed, 2016, 11:1-12.
[19] YAO C, WANG W, ZHOU X, et al. Effects of poly(amidoamine) dendrimers on ocular absorption of puerarin using microdialysis [J]. J Ocul Pharmacol Ther, 2011, 27(6):565-569.
[20] CHAPLOT S P, RUPENTHAL I D. Dendrimers for gene delivery--a potential approach for ocular therapy? [J]. J Pharm Pharmacol, 2014, 66(4):542-556.
[21] IEZZI R, GURU B R, GLYBINA I V, et al. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration [J]. Biomaterials, 2012, 33(3):979-988.
[22] SPATARO G, MALECAZE F, TURRIN C O, et al. Designing dendrimers for ocular drug delivery [J]. Eur J Med Chem, 2010, 45(1):326-334.
[23] ALMEIDA H, AMARAL M H, LOBAO P, et al. Applications of poloxamers in ophthalmic pharmaceutical formulations:an overview [J]. Expert Opin Drug Deliv, 2013, 10(9):1223-1237.
[24] HE W, GUO X, FENG M, et al. In vitro and in vivo studies on ocular vitamin A palmitate cationic liposomal in situ gels [J]. Int J Pharm, 2013, 458(2):305-314.
[25] LUO Z, JIN L, XU L, et al. Thermosensitive PEG-PCL-PEG (PECE) hydrogel as an in situ gelling system for ocular drug delivery of diclofenac sodium [J]. Drug Deliv, 2016, 23(1):63-68.
[26] FAMILI A, KAHOOK M Y, PARK D. A combined micelle and poly(serinol hexamethylene urea)-co-poly(N-isopropylacrylamide) reverse thermal gel as an injectable ocular drug delivery system [J]. Macromol Biosci, 2014, 14(12):1719-1729.
[27] JAISWAL M, KUMAR M, PATHAK K. Zero order delivery of itraconazole via polymeric micelles incorporated in situ ocular gel for the management of fungal keratitis [J]. Colloids Surf B Biointerfaces, 2015, 130:23-30.
[28] PATHAK M K, CHHABRA G, PATHAK K. Design and development of a novel pH triggered nanoemulsified in-situ ophthalmic gel of fluconazole:ex-vivo transcorneal permeation, corneal toxicity and irritation testing [J]. Drug Dev Ind Pharm, 2013, 39(5):780-790.
[29] YU S, WANG Q M, WANG X, et al. Liposome incorporated ion sensitive in situ gels for opthalmic delivery of timolol maleate [J]. Int J Pharm, 2015, 480(1-2):128-136.
[30] DUAN Y, CAI X, DU H, et al. Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin [J]. Colloids Surf B Biointerfaces, 2015, 128:322-330.
[31] ELSHAER A, GHATORA B, MUSTAFA S, et al. Contact lenses as drug reservoirs & delivery systems:the successes & challenges [J]. Ther Deliv, 2014, 5(10):1085-1100.
[32] NASR F H, KHOEE S, DEHGHAN M M, et al. Preparation and evaluation of contact lenses embedded with polycaprolactone-based nanoparticles for ocular drug delivery [J]. Biomacromolecules, 2016, 17(2):485-495.
[33] TASHAKORI-SABZEVAR F, MOHAJERI S A. Development of ocular drug delivery systems using molecularly imprinted soft contact lenses [J]. Drug Dev Ind Pharm, 2015, 41(5):703-713.
[34] TIEPPO A, WHITE C J, PAINE A C, et al. Sustained in vivo release from imprinted therapeutic contact lenses [J]. J Controlled Release, 2012, 157(3):391-397.
[35] LEE S S, HUGHES P, ROSS A D, et al. Biodegradable implants for sustained drug release in the eye [J]. Pharm Res, 2010, 27(10):2043-2053.
[36] SOUZA M C, FIALHO S L, SOUZA P A, et al. Tacrolimus-loaded PLGA implants: in vivo release and ocular toxicity [J]. Curr Eye Res, 2014, 39(1):99-102.
[37] PEHLIVAN S B, YAVUZ B, CALAMAK S, et al. Preparation and in vitro/in vivo evaluation of cyclosporin A-loaded nanodecorated ocular implants for subconjunctival application [J]. J Pharm Sci, 2015, 104(5):1709-1720.
[38] PATEL S R, LIN A S, EDELHAUSER H F, et al. Suprachoroidal drug delivery to the back of the eye using hollow microneedles [J]. Pharm Res, 2011, 28(1):166-176.
[39] MAHADEVAN G, SHEARDOWN H, SELVAGANAPATHY P. PDMS embedded microneedles as a controlled release system for the eye [J]. J Biomater Appl, 2013, 28(1):20-27.
[40] REIMONDEZ-TROITINO S, CSABA N, ALONSO M J, et al. Nanotherapies for the treatment of ocular diseases [J]. Eur J Pharm Biopharm, 2015, 95(Pt B):279-293.

基金

浙江省医学重点学科群资助项目(XKQ-010-001);浙江省公益基金资助项目(2016C37074);浙江省医科院青年基金资助项目(2013Y002);浙江省医药卫生科技项目(2014KYB068)
PDF(1005 KB)

Accesses

Citation

Detail

段落导航
相关文章

/